Preparation and Solution Properties of Chalcogenide-Rich Clusters $[Mo_3Y_7(H_2O)_6]^{4+}$ (Y = S, Se): Kinetics of PR₃³⁻ Abstraction of Y from μ -(Y₂²⁻) and H₂O Substitution by Cl⁻ and Br⁻

David M. Saysell, Vladimir P. Fedin, Gert J. Lamprecht, Maxim N. Sokolov, and A. Geoffrey Sykes*

Department of Chemistry, The University of Newcastle, Newcastle upon Tyne NE1 7RU, U.K.

Received November 6, 1996[®]

The chalcogenide-rich trinuclear Mo^{IV}₃ clusters $[Mo_3Y_7(H_2O)_6]^{4+}$, containing single μ_3 - (Y^{2-}) and three μ - (Y_2^{2-}) core ligands, have been obtained for the first time from polymeric $\{Mo_3Y_7Br_4\}_x$ via $[Mo_3Y_7Br_6]^{2-}$ (Y = S, Se). ICP analyses of 2 M HCl solutions give Mo:S and Mo:Se ratios consistent with the formulas indicated, and on reaction with concentrated HBr, 85% recovery of $(Et_4N)_2[Mo_3S_7Br_6]$, the structure of which is known, has been achieved. Abstraction of S and Se with PPh₃ (two-phase system), or the water-soluble phosphine $(3-SO_3C_6H_4)_3P^{3-1}$ (PR_3^{3-}) , gives quantitative formation of $[Mo_3S_4(H_2O)_9]^{4+}$ and $[Mo_3Se_4(H_2O)_9]^{4+}$. With CN⁻, both abstraction of S (or Se) and CN⁻ replacement of H₂O is observed, giving [Mo₃S₄(CN)₉]⁵⁻ and [Mo₃Se₄(CN)₉]⁵⁻ as products. It was possible to assign which atom of the sideways η^2 , $\eta^2 \mu$ -(S₂²⁻) and μ -(Se₂²⁻) ligands is abstracted using the structurally characterized $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ cluster. Thus it was demonstrated that with the phosphines the equatorial (to the Mo₃ plane) Se atoms of the three μ -(SSe²⁻) groups are removed with formation of the Mo₃S₄⁴⁺ core. Kinetic studies on the reactions of [Mo₃S₇(H₂O)₆]⁴⁺ and [Mo₃Se₇(H₂O)₆]⁴⁺ with PR₃³⁻ give ~10³ faster abstraction rate constants $(k_a/M^{-1} \text{ s}^{-1})$ for S than Se. The rate law $k_a = k_1[H^+] + k_{-1}[H^+]^{-1}$ is explained by the involvement of protonated μ -(Y₂²⁻) (k_1) and an H₂O conjugate-base form (k_{-1}). Equilibration rate constants for $X^- = Cl^-$ and Br^- substitution of H₂O on $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ are however independent of $[H^+]$ in the range 0.5–2.0 M investigated. With X⁻ concentrations up to 1.3 M (S cluster) and 0.3 M (Se), the uniphasic reactions are assigned as substitution of the H₂O cis to μ_3 -(Y²⁻) at each Mo. At 25 °C formation rate constants $10^4 k_f / M^{-1} s^{-1}$ are as follows for $[Mo_3S_7(H_2O)_6]^{4+}$: Cl⁻ (1.83); Br⁻ (2.07). The same rate constants are as follows for $[Mo_3Se_7(H_2O)_6]^{4+}$: Cl⁻ (6.7); Br⁻ (33). Formation rate constants for Cl⁻ are surprisingly 2 × 10^6 times slower than for the reaction of $[Mo_3S_4(H_2O)_9]^{4+}$ with Cl⁻. Reactions of $Mo_3S_7^{4+}$ with three metals (Sn, Ni, In) were studied briefly.

Introduction

The Mo^{IV}₃ incomplete cuboidal cluster $[Mo_3S_4(H_2O)_9]^{4+}$ with a vacant metal subsite, first characterized in the 1980's,¹⁻⁴ has been extensively studied.⁵⁻⁷ In acidic solutions the aqua ion is noted for its high stability over long periods (years!), with no tendency to lose core atoms or undergo redox changes. The selenium-containing analogue $[Mo_3Se_4(H_2O)_9]^{4+}$ has also been fully characterized.^{8,9} In this paper we report the preparation of new chalcogenide-rich Mo^{IV}₃ clusters $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ from polymeric chain compounds $\{Mo_3Y_7-Br_4\}_x$ via the single clusters $[Mo_3Y_7Br_6]^{2-}$ (Y = S, Se). Procedures for the conversion of $\{Mo_3Y_7Br_4\}_x$, obtained by

- Müller, A.; Jostes, R.; Eltzner, W.; Nie, C.-S.; Diemann, E.; Bögge, H.; Zimmerman, M.; Dartmann, D.; Reinsch-Vogell, U.; Che, S.; Cyvin, S. J.; Cyvin, B. N. *Inorg. Chem.* **1985**, *24*, 2872.
- (2) Cotton, F. A.; Dori, Z.; Llusar, R.; Schwortzer, W. Inorg. Chem. 1986, 25, 3654.
- (3) Shibahara, T.; Kuroya, H. Polyhedron 1986, 5, 357.
- (4) Martinez, M.; Ooi, B.-L.; Sykes, A. G. J. Am. Chem. Soc. 1987, 109, 4615.
- (5) Ooi, B.-L.; Sykes, A. G. Inorg. Chem. 1989, 28, 3799.
- (6) Shibahara, T. Adv. Inorg. Chem. 1991, 37, 143-173.
- (7) Saysell, D. M.; Sokolov, M. N.; Sykes, A. G. In *Sulfur Coordinated Transition-Metal Complexes*; Stiefe, E., Matsumoto, K., Eds.; ACS Symposium Series No. 653, Pacific Chem. 95 Meeting, Honolulu; American Chemical Society: Washington, DC, 1996; pp 216–224.
- (8) Nasreldin, M.; Henkel, G.; Kampmann, G.; Krebs, B.; Lamprecht, G. J.; Routledge, C. A.; Sykes, A. G. J. Chem. Soc., Dalton Trans. 1993, 737.
- (9) Lamprecht, G. J.; Martinez, M.; Nasreldin, M.; Routledge, C. A.; Al-Shatti, Sykes, A. G. J. Chem. Soc., Dalton Trans. 1993, 747.

Figure 1. Structure representation of $[Mo_3S_7(H_2O)_6]^{4+}$ based on that of $[Mo_3S_7Br_6]^{2-}$ determined by X-ray crystallography.

direct combination of the elements, into $[Mo_3Y_7Br_6]^{2-}$ have been described.^{10–12} An X-ray structure of $(Ph_4P)_2[Mo_3S_7Cl_6]$ has been reported, and $(Ph_4P)_2[Mo_3S_7Br_6]$ is known to be isostructural.¹³ Both clusters have a single μ_3 -sulfido and three μ -disulfido bridging ligands orientated as in Figure 1. Each disulfido group bridges two Mo's in a sideways $\eta^2:\eta^2$ manner

- (10) Fedin, V. P.; Mironov, Y. V.; Sokolov, M. N.; Kolesov, B. A.; Tkachev, S. V.; Fedorov, V. Y. *Inorg. Chim. Acta.* **1990**, *167*, 39.
- (11) Fedin, V. P.; Sokolov, M. N.; Geras'ko, O. A.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. *Inorg. Chim. Acta* **1991**, *187*, 81.
- (12) Fedin, V. P.; Sokolov, M. N.; Myakishev, K. G.; Geras'ko, O. A.; Fedorov, V. Y.; Macichek, J. *Polyhedron* **1991**, *10*, 1311.
- (13) (a) Virovets, A. V.; Slovohotov, Y. L.; Struchkov, Y. T.; Fedorov, V. Y. Naumov, N. G.; Geras'ko, O. A.; Fedin, V. P. Koard. Khim. 1990, 16, 332. (b) Fedin, V. P. Unpublished work.

[®] Abstract published in Advance ACS Abstracts, May 15, 1997.

with one atom equatorial and the other axial to the Mo₃ plane, distances Mo–S_{eq} 2.5 Å and Mo–S_{ax} 2.4 Å.¹⁴ There are two nonidentical terminal ligands (H₂O in the present studies) to each Mo, which are cis and trans respectively to the μ_3 -(S^{2–}) ligand. The structure of [Mo₃Se₇(dtc)₄] (dtc = diethyldithiocarbamate) has also been determined,¹¹ and a similar core structure is indicated. We explore here the aqueous solution chemistry of the chalcogenide-rich [Mo₃Y₇(H₂O)₆]⁴⁺ clusters, making comparisons in particular with [Mo₃Y₄(H₂O)₉]⁴⁺, which has three terminal H₂O's to each Mo.

Experimental Section

Starting Materials. To prepare the polymeric chain compounds ${Mo_3Y_7Br_4}_x$ the elements were heated in a glass ampule made from Mo glass or quartz, with diameter ~ 2 cm, volume ~ 40 mL, and wall \sim 1 mm thick. Typical amounts were Mo (4 g), Se (7.44 g), and Br₂ (1.44 mL). The Br₂ must first be dried over concentrated H₂SO₄. The ampule was placed in a variable-temperature oven at 340-380 °C for at least 48 h. The temperature was raised gradually to 150 (~3 h), 200 °C (\sim 3 h), etc., and the ampule was contained in a steel tube for safety. The compound (Et₄N)₂ [Mo₃S₇Br₆] was prepared from {Mo₃S₇- Br_4_x by first converting to $(NH_4)_2[Mo_3S_{13}]$ and then treating with concentrated HBr and Et₄NBr as described.¹⁰ For the Se analogue ${Mo_3Se_7Br_4}_x$ and PPh₄Br (2 g per 1 g of complex) were melted together at 250 °C and heated for ~3 h under N₂ to obtain (Ph₄P)₂[Mo₃Se₇-Br₆].¹¹ The solid was powdered and washed with hot EtOH. The mixed S- and Se-containing cluster (Et₄N)₂[Mo₃S₄Se₃Br₆] was prepared by reacting (Et₄N)₂[Mo₃S₇Br₆] with Ph₃PSe (replacement of S on S₂²⁻ by Se) as described.¹⁵ All reactions were carried out in a fumehood.

Other Reagents. These included *p*-toluenesulfonic acid (Hpts) (CH₃C₆H₄SO₃H), lithium carbonate (Li₂CO₃), triphenylphosphine, HBr (all from Aldrich), HCl (Fisons), and the water-soluble salt of tris(3-sulfonatophenyl)phosphine, Na₃[(3-SO₃C₆H₄)₃P]·4H₂O (Strem Chemicals), here abbreviated to PR₃^{3–}, all of which were used as supplied. The latter contains 10.3% phosphine oxide,¹⁶ which is nonreactive and was allowed for in determining concentrations of PR₃^{3–} made up by weight. Solution of Li(pts) were prepared by Li₂CO₃ neutralization of Hpts and recrystallizing. All other chemicals used were of analytical grade purity. Metals used were tin (~3 mm diameter shot; Aldrich), nickel (1 mm diameter wire; Wiggin), and indium (3 mm diameter wire; Johnson Matthey).

Elemental Analyses. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses for Mo and S or Se were carried out on 2 M HCl solutions.

Kinetic Studies. The temperature was 25.0 ± 0.1 °C, and *I* was adjusted to 2.00 \pm 0.01 M (Lipts) for all runs. Solutions of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ were stored under N₂, to avoid a slow reaction with O2. Kinetic runs could be carried out in air and were in agreement with experiments carried out under N2. Stock solutions were eluted in \geq 2.0 M Hpts, which limited the lower range of [H⁺] that could be explored. Stopped-flow time-range experiments (reactions with PR33-) were carried out on Dionex-D110 and Applied Photophysics instruments. The latter (shorter mixing time) was essential for the faster $[Mo_3S_7(H_2O)_6]^{4+}$ studies. Rate constants were obtained on the Dionex stopped-flow using fitting procedures from On-Line Instrument Systems (OLIS, Bogart, GA) and on the Applied Photophysics instrument using a multitask software package as supplied. Individual rate constants quoted are an average of at least five traces. Conventional studies (Cl⁻ and Br⁻ substitution) were performed using a Philips-Unicam PU 8740 spectrophotometer.

Treatment of Rate Constants. Unweighted linear least-squares fitting procedures were used.

Figure 2. UV-vis spectra of (a) $[Mo_3S_7(H_2O)_6]^{4+}$ (--) and $[Mo_3-S_4(H_2O)_9]^{4+}$ (--) and (b) $[Mo_3Se_7(H_2O)_6]^{4+}$ (--) and $[Mo_3Se_4(H_2O)_9]^{4+}$ (--) in 2.0 M Hpts.

Results

Preparation and Characterization of $Mo_3S_7(H_2O_6)^{4+}$. The procedure used was to aquate the dark brick-red (Et₄N)₂[Mo₃S₇-Br₆] salt (0.2 g)¹⁰ in 4 M *p*-toluenesulfonic acid (Hpts; 25 mL) for 3 h at room temperature, when a clear yellow solution was obtained.¹⁷ This was diluted with a 3-fold volume of water and loaded onto a Dowex 50W-X2 cation-exchange resin. The compact band formed was eluted as a lemon yellow solution with ≥ 2 M Hpts, consistent with a 4+ charge. ICP-AES analyses on a sample eluted with 2 M HCl gave an Mo:S ratio of 3:7.3. UV-vis absorbance spectra, confirmed by quantitative conversion to $[Mo_3S_4(H_2O)_4]^{4+}$ as in (1) below, gave shoulders only at $\lambda/nm~(\epsilon/M^{-1}~cm^{-1}~per~Mo_3)$ ${\sim}350~(1800)$ and ${\sim}425$ (500), Figure 2. Beer's Law is obeyed at 350 nm with concentrations in the range 0.06-1.9 mM investigated. Stock solutions of $[Mo_3S_7(H_2O)_6]^{4+}$ (3-4 mM) are stable for several weeks in 2.0 M Hpts or HCl under N₂ and give only $\sim 10\%$ decay over 12 h in air at \sim 20 °C. However in 2.0 M HClO₄ a more rapid decay is observed, yielding a precipitate which is most likely sulfur.

To characterize the $[Mo_3S_7(H_2O)_6]^{4+}$ product a solution in 2.0 M Hpts was stirred with 5% triphenylphosphine, PPh₃, in dichloromethane (5 mL). Reaction is fast, and the color becomes green in less than 1 min. The organic layer was removed, the green aqueous solution diluted 5-fold with water, and the product loaded onto a Dowex 50W-X2 column (15 × 1.2 cm diameter). After washing with 0.2 M acid (200 mL), elution was with the same 2.0 M acid. The conversion could also be achieved using the water-soluble phosphine PR₃³⁻ (R = 3-sulfonatophenyl), as the sodium salt Na₃[(3-SO₃C₆H₄)₃P]· 4H₂O. In both cases the product was the well-characterized [Mo₃S₄(H₂O)₉]⁴⁺, with UV-vis absorbance peak positions [λ /nm (ϵ /M⁻¹ cm⁻¹ per Mo₃)] 366 (5550) and 603 (362) in 2.0 M Hpts, Figure 2, indicating an S-abstraction process as in (1), with formation of triphenylphosphine sulfide.

$$Mo_3S_7^{4+} + 3PR_3^{3-} \rightarrow Mo_3S_4^{4+} + 3SPR_3^{3-}$$
 (1)

It was also possible to convert the $[Mo_3S_7(H_2O)_6]^{4+}$ product into the previously characterized $[Mo_3S_4(CN)_9]^{5-}$ by reloading onto a Dowex column (10 × 1.2 cm diameter) and after washing with H₂O (200 mL) eluting with 0.1 M KCN. The product was identified as $[Mo_3S_4(CN)_9]^{5-}$ from the UV–vis peaks at

⁽¹⁴⁾ Meienberger, M. D.; Hegetschweiler, K.; Gielgger, H.; Gramlich, V. Inorg. Chim. Acta 1993, 213, 157.

⁽¹⁵⁾ Fedin, V. P.; Mironov, Y. V.; Sokolov, M. N.; Kolesov, B. A.; Fedorov, V. Y.; Yufit, D. S.; Struchkov, Y. T. *Inorg. Chim. Acta* **1990**, *174*, 275.

⁽¹⁶⁾ Saysell, D. M.; Borman, C. D.; Kwak, C.-H.; Sykes, A. G. Inorg. Chem. 1996, 35, 173.

⁽¹⁷⁾ Fedin, V. P.; Lamprecht, G. J.; Sykes, A. G. J. Chem. Soc. Chem. Commun. 1994, 2685.

247 (17 000), 280 sh, 342 (4500), 377 (5500), and 610 (500).¹ The reaction involves core S_2^{2-} abstraction (eq 2) and substitu-

$$Mo_3S_7^{4+} + 3CN^- \rightarrow Mo_3S_4^{4+} + 3SCN^-$$
 (2)

tion of H₂O ligands by CN⁻. Similar conversions can be carried out by treating a suspension of $\{Mo_3S_7Br_4\}_x$ (1 g in 10 mL of H₂O), or a solution of $[Mo_3S_7Br_6]^{2-}$, with KCN (1 g) for ~60 min. Reactions are summarized in Scheme 1. On addition of SCN⁻ (0.1 M) to $[Mo_3S_7(H_2O)_6]^{4+}$ in Hpts side reactions contribute and a cream-colored precipitate (most likely sulfur) is formed. This compares with addition of NCS⁻ (1 M) to $[Mo_3S_4(H_2O)_9]^{4+}$, when formation of $[Mo_3S_4(NCS)_9]^{5-}$ is observed in a clean reaction.

Retention of the Mo_3S_7 core was confirmed by eluting the aqua ion with 2 M HBr, evaporating to dryness on a vacuum line, and redissolving in concentrated HBr. Only under these extreme conditions do six bromides coordinate. Addition of excess Et_4NBr resulted in the formation of orange crystals of $(Et_4N)_2[Mo_3S_7Br_6]$ (85% yield),¹⁰ which was characterized by its infrared spectrum.

Preparation and Characterization of [Mo₃Se₇(H₂O)₆]⁴⁺. A similar procedure applies involving in this case the aquation of brown (PPh₄)₂[Mo₃Se₇Br₆] (0.5 g)¹¹ in 4 M Hpts (25 mL) for 10 h at room temperature. On filtration an orange solution was obtained which was diluted 5-fold with H₂O and loaded onto a Dowex 50W-X2 cation-exchange column. The compact band formed was eluted as an orange solution with 4 M Hpts. Elution was also possible with 2 M HCl. ICP analyses on the latter gave a ratio Mo:Se of 3:6.8 consistent with [Mo₃Se₇- $(H_2O)_6$ ⁴⁺. UV-vis spectra gave shoulders at ~370 (1150) and \sim 480 (200), Figure 2. Solutions were stable in air for a few hours, but over longer periods red selenium was deposited. Solutions were stable under N₂ at \sim 20 °C for several weeks (<10% decomposition). Beer's law was obeyed at \sim 430 nm for solutions in the range 0.10-0.70 M investigated. Solutions of $[Mo_3Se_7(H_2O)_6]^{4+}$ were converted into $[Mo_3Se_4(H_2O)_9]^{4+}$ by procedures as described for $[Mo_3S_7(H_2O)_6]^{4+}$. The reactions with the phosphines are appreciably slower; e.g., with PPh₃ 40 min is required. UV-vis peaks for $[Mo_3Se_4(H_2O)_9]^{4+}$ in 2 M Hpts are at 425 (2460) and 648 (263), Figure 2. Spectra exhibit a red shift on replacing S by Se as has been observed previously for Se-substituted [2Fe-2S] proteins.¹⁸ Elution of [Mo₃Se₇-(H₂O)₆]⁴⁺ from a Dowex column with 0.1 M KCN gives conversion to [Mo₃Se₄(CN)₉]⁵⁻, with UV-vis peak positions 350 (5070), 443 (5460), and 677 (730). The X-ray structure of Cs₃[Mo₃Se₄(CN)₉]·CsCl·4H₂O has been determined.¹⁹ Scheme 1 indicated above applies also for Y = Se.

⁽¹⁹⁾ Fedin, V. P.; Lamprecht, G. J.; Kohzuma, T.; Clegg, W.; Elsegood, M. R. J.; Sykes, A. G. J. Chem. Soc. Dalton Trans., in press.

Figure 3. Dependence of first-order rate constants k_{obs} (25 °C) for the reaction of the water-soluble phosphine (PR₃³⁻) with [Mo₃S₇(H₂O)₆]⁴⁺ on [PR₃³⁻] (reactant in excess) at [H⁺]/M = 2.0 (×), 1.5 (•), 1.00 (•), 0.60 (•), and 0.30 (•), with I = 2.00 M (Li(pts)).

Table 1. Summary of Second-Order Rate Constants *k* (25 °C) for the S- and Se-Abstraction Reactions of PR₃³⁻ with $[Mo_3S_7(H_2O)_6]^{4+}$, Y = S and Se [*I* = 2.00 M (Li(pts))]

_		· [((1))]			
	$\mathbf{Y} = \mathbf{S}$		Y = Se		
	[H ⁺]/M	$10^{-4}k_{\rm a}/{ m M}^{-1}~{ m s}^{-1}$	[H ⁺]/M	$k_{\rm a}/{ m M}^{-1}~{ m s}^{-1}$	
	2.00	7.8(3)	2.00	59(8)	
	1.50	6.2(2)	1.50	52(3)	
	1.00	5.9(1)	0.75	74(2)	
	0.60	7.4(1)	0.60	77(1)	
	0.30	9.4(5)	0.50	86(8)	

Preparation and Reactivity of $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ with **PR**₃³⁻. The compound (PPh₃Et)₂[Mo₃S₄Se₃Cl₆]¹⁸ has been prepared previously, and an X-ray structure has demonstrated the presence of μ_3 -(S²⁻) and three μ -(SSe²⁻) core ligands, with Se in the same equatorial plane as the three Mo atoms. In this work the (Et₄N)₂[Mo₃S₄Se₃Br₆] salt was used. On treatment with 4 M Hpts the aqua ion [Mo₃S₄Se₃(H₂O)₆]⁴⁺ forms, and on reaction of a 4 mM solution (5 mL) with 3% PPh₃ (5 mL) in chloroform, the color becomes green in 1–2 min. After 1 h the green upper layer was separated, and the UV–vis spectrum was shown to be that of [Mo₃S₄(H₂O)₉]⁴⁺. The same abstraction process is observed on elution of [Mo₃S₄Se₃(H₂O)₆]⁴⁺ from a cation-exchange column with CN⁻, when [Mo₃S₄(CN)₉]⁵⁻ was identified as the only product from its UV–vis spectrum.

Kinetics of the Reactions of [Mo₃S₇(H₂O)₆]⁴⁺ and [Mo₃Se₇- $(H_2O)_6$ ⁴⁺ with PR₃³⁻. Stopped-flow studies were on aqueous pts⁻ solutions, I = 2.00 M (Lipts), with [PR₃³⁻] in >10-fold excess of the trinuclear complex. The stoichiometry of the reaction is 3:1, eq 1. Some runs were carried out at less than the 10-fold excess condition in an attempt to detect a backreaction (not observed). Uniphasic absorbance changes are observed with quantitative formation of [Mo₃S₄(H₂O)₉]⁴⁺ and $[Mo_3Se_4(H_2O)_9]^{4+}$, respectively. First-order rate constants k_{obs} -(25 °C) determined at 366 nm (S) and 425 nm (Se) are listed in the Supporting Information. Runs with $[Mo_3S_7(H_2O)_6]^{4+}$ were fast and at the limit of the stopped-flow range. Linear dependencies as in Figure 3 enable second-order rate constants $k_{\rm a}$ for the S and Se abstraction processes to be determined. Table 1. Variations of k_a with [H⁺] are illustrated in Figure 4. A two-term rate law (3) is suggested. This can be rearranged to

$$k_{a} = k_{1}[H^{+}] + k_{-1}[H^{+}]^{-1}$$
(3)

(4). For each reaction linear plots of $k_a[H^+]$ against $[H^+]^2$ are obtained (figure in the Supporting Information). From these

Figure 4. Variation of second-order rate constants k_a with [H⁺] for the PR₃³⁻ chalcogenide-abstraction reactions from $[Mo_3S_7(H_2O)_6]^{4+}$ (\blacktriangle) and $[Mo_3S_7(H_2O)_6]^{4+}$ (\blacklozenge), with I = 2.00 M (Li(pts)).

$$k_{a}[H^{+}] = k_{1}[H^{+}]^{2} + k_{-1}$$
(4)

 $k_1 = 3.14(15) \times 10^4 \text{ M}^{-2} \text{ s}^{-1}$ and $k_{-1} = 2.78(48) \times 10^4 \text{ s}^{-1}$ for [Mo₃S₇(H₂O)₆]⁴⁺ and $k_1 = 19.0(13) \text{ M}^{-2} \text{ s}^{-1}$ and $k_{-1} = 40(4) \text{ s}^{-1}$ for [Mo₃Se₇(H₂O)₆]⁴⁺. We cannot entirely exclude contributions from a term independent of [H⁺] to (3), but k_1 and k_{-1} have different origins, and the best fit of data is according to (4). For consistency with the statistical factor approach adopted elsewhere, rate constants have been divided by a factor of 3 to allow for concurrent reaction at three identical S₂²⁻ (or Se₂²⁻) centers.^{5,20} From four runs, [PR₃³⁻] in the range 0.72–1.44 mM, k_a for the reaction of [Mo₃S₄Se₃(H₂O)₇]⁴⁺ with PR₃³⁻ is 1.48(4) × 10⁵ M⁻¹ s⁻¹ in 2.0 M Hpts.

Kinetics of Cl⁻ and Br⁻ Substitution on $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$. Experiments already referred to, and those reported in ref 21, indicate three identical cis H₂O's at which complexation is more favorable than for the trans H₂O's. Consistent with these observations uniphasic absorbance changes were observed and monitored by conventional UV-vis spectrophotometry. The dependence of equilibration rate constants k_{eq} at 25 °C (for listing see Supporting Information) with halide (X⁻) concentrations to 1.3 M (S) and 0.3 M (Se), as illustrated in Figure 5. The shape of UV-vis spectra does not change on complexing with X⁻ (the two shoulders are retained, Figure 2), consistent with retention of Mo₃S₇ and Mo₃Se₇ core structures. The linear dependencies in Figure 5 define formation (k_{ff}) and aquation rate constants (k_{aq}) (eq 5). UV-vis absorbance

$$k_{\rm eq} = k_{\rm f} [{\rm X}^-]/3 + k_{\rm aq}$$
 (5)

changes were not large enough to monitor reactions with the clusters in ≥ 10 -fold excess of [X⁻]. However since three cis H₂O's participate in the first phase of reaction at I = 2.00 M (Li(pts)), a statistical factor of 3 is included in (5), consistent with procedures established previously for substitution on e.g. [Mo₃S₄(H₂O)₉]⁴⁺ and [Mo₄S₄(H₂O)₁₂]^{5+,5,20} Values of $k_{\rm f}$ and $k_{\rm aq}$ are listed in Table 2. No evidence was obtained for substitution at the more inert trans H₂O ligands at the [X⁻] values used in this study.

Other Reactions. Reactions with three metals were investigated under O₂-free conditions (N₂). The reaction of $[Mo_3S_7-(H_2O)_6]^{4+}$ with Sn shot gives color changes first to brown (15

Figure 5. Dependence of equilibration rate constants k_{eq} (25 °C) on halide (X⁻) concentration (reactant in excess) for the reaction of (A) $[Mo_3S_7(H_2O)_6]^{4+}$, X⁻ = Cl⁻, with $[H^+]/M = 2.00$ (♥), 1.00 (♥, and 0.50 (×) and, X⁻ = Br⁻, with $[H^+]/M = 2.00$ (■), 1.00 (□), and 0.50 (+), I = 2.00 M (Li(pts)), and (B) $[Mo_3Se_7(H_2O)_6]^{4+}$, X⁻ = Cl⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and, X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and, X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and, X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and, X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×) and X⁻ = Br⁻, with $[H^+]/M = 2.00$ (●), 1.00 (○), and 0.50 (×), I = 2.00 M (Li(pts)).

Table 2. Summary of Formation (k_f) and Aquation (k_{aq}) Rate Constants at 25 °C from Equilibration Substitution of Cl⁻ and Br⁻ for H₂O on [Mo₃S₇(H₂O)₆]⁴⁺ and [Mo₃Se₇(H₂O)₆]⁴⁺ [I = 2.00 M (Li(pts))]

reacn	$10^4 k_{\rm f}/{ m M}^{-1}~{ m s}^{-1}$	$10^4 k_{\rm aq}/{\rm s}^{-1}$	$k_{ m f}/k_{ m aq}/{ m M}^{-1}$
$Mo_3S_7^{4+} + Cl^-$	1.83(9)	0.47(24)	3.9
$Mo_3S_7^{4+} + Br^-$	2.07(22)	1.6(2)	1.29
$Mo_3Se_7^{4+} + Cl^-$	6.7(3)	0.38(20)	17.6
$Mo_3Se_7^{4+} + Br^-$	33(1)	2.8(7)	11.8

min) and then a dark reddish-brown. The reaction was complete in ~ 8 h when the UV–vis spectrum indicated $\sim 80\%$ formation of [Mo₆SnS₈(H₂O)₁₈]⁸⁺ with peak positions at 322, 372, and 543 nm.²²

Reactions of $[Mo_3S_7Br_6]^{2-}$ in 2 M HCl with Ni (20 h at 55 °C) and In wire (15 h at 20 °C), gave 60% $Mo_3NiS_4^{4+}$ and ~100% $Mo_3InS_4^{5+}$, respectively, identified from know UV– vis spectra.^{16,23,24} Evolution of H₂S was detected in all three cases, and reduction of μ -(S₂²⁻) with S–S cleavage is indicated. Heterometal addition occurs in each case to give products previously identified.⁷ If instead of a metal with $[Mo_3S_7Br_6]^{2-}$ in 2 M HCl tetrahydroborate BH_4^- is used in an attempt to

(24) Sakane, G.; Shibahara, T. Inorg. Chem. 1993, 32, 777.

⁽²⁰⁾ Li, Y. J.; Nasreldin, M.; Humanes, M.; Sykes, A. G. Inorg. Chem. 1992, 31, 3011.

⁽²¹⁾ Fedin, V. P.; Mironov, Y. V.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. Polyhedron, 1992, 11, 2083.

⁽²²⁾ Varey, J. E.; Lamprecht, G. J.; Fedin, V. P.; Holder, A.; Clegg, W.; Elsegood, M. R. J.; Sykes, A. G. *Inorg. Chem.* **1996**, *35*, 5525.

⁽²³⁾ Sokolov, M. N.; Hernandez-Molina, R.; Saysell, D. M.; Sykes, A. G. Manuscript in preparation.

bring about the same μ -(S₂²⁻) $\rightarrow \mu$ -(S²⁻) conversion, the yield of $[Mo_3S_4(H_2O)_9]^{4+}$ and related Mo_3S_4 core products is only small ($\sim 3\%$).

Discussion

The preparation and properties of chalcogenide-rich clusters as the aqua ions $[Mo_3\hat{S}_7(\hat{H}_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ are described for the first time. Analyses for Mo:S and Mo:Se ratios by ICP-AES are consistent with the formulas indicated. The structures of $[Mo_3S_7Cl_6]^{2-}$ and $[Mo_3S_7Br_6]^{2-}$ have been determined,¹³ and retention of the Mo₃S₇ core in the aqua ion product was confirmed by re-formation of (Et₄N)₂[Mo₃S₇Br₆] (85% yield). The structure of [Mo₃Se₇(dtc)₄] has also been determined.¹¹ The first complex with an Mo₃Te₇ core has recently been reported as the cyano complex $[Mo_3Te_7(CN)_6]^{2-25}$ but no route to the corresponding chloro/ bromo or aqua complexes has yet been identified. The [Mo₃S₇(H₂O)₆]⁴⁺ and [Mo₃Se₇- $(H_2O)_6]^{4+}$ aqua ions are reasonably stable in air but for storage purposes require an inert (N₂) atmosphere. Decay processes are observed on addition of NCS⁻ to [Mo₃S₇(H₂O)₆]⁴⁺ in Hpts and for [Mo₃S₇(H₂O)₆]⁴⁺ in 2 M HClO₄, and such conditions were therefore avoided for both the S₇ and Se₇ clusters.

As part of the characterization of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3 Se_7(H_2O)_6]^{4+}$, reactions with triphenylphosphine (PPh₃) and the water-soluble tris(3-sulfonato-phenyl)phosphine (PR_3^{3-}) were studied. The products $[Mo_3S_4(H_2O)_9]^{4+}$ and $[Mo_3Se_4(H_2O)_9]^{4+}$ were identified from known UV-vis spectra. Elution of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ from a Dowex cationexchange column with 0.1 M CN- also resulted in chalcogenide abstraction, with CN⁻ replacement of H₂O ligands occurring to give $[Mo_3S_4(CN)_9]^{5-}$ and $[Mo_3Se_4(CN)_9]^{5-}$. These products were likewise identified from their UV-vis spectra.

The mixed-chalcogenide analogue $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ has one μ_3 -(S²⁻) and three μ -(SSe²⁻) core ligands. An X-ray crystal structure on the precursor complex [Mo₃S₄Se₃Br₆]²⁻ has demonstrated that the Se atoms of the μ -(SSe²⁻) ligands are equatorial.^{15,26,27} Reaction of the aqua ion with PR_3^{3-} gives $[Mo_3S_4(H_2O)_9]^{4+}$ as the sole product, and in the case of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ abstraction of the equatorial atom of μ -(S₂²⁻) and μ -(Se₂²⁻) is therefore proposed. The same conclusion has been arrived at using ³⁴S isotopic labeling on $Mo_3S_7^{4+.10}$ Thus the precise mechanism of phosphine abstraction is reasonably well established.

There have been no previous kinetic/mechanistic studies on phosphine chalcogenide abstraction reactions from Y_2^{2-} . Uniphasic kinetics are observed for the abstraction reactions [Mo₃S₇- $(H_2O)_6]^{4+} \rightarrow [MO_3S_4(H_2O)_6]^{4+}$ and $[MO_3Se_7(H_2O)_6]^{4+} \rightarrow [MO_3 Se_4(H_2O_6)^{4+}$, with PR_3^{3-} the reactant in large excess. Rate laws of the form $k_a = k_1[H^+] + k_{-1}[H^+]^{-1}$ are observed, which are somewhat unusual. Both terms are larger than would normally be observed for medium effects.²⁸ The k_1 term is therefore assigned to a process involving protonation of S_2^{2-} or Se_2^{2-} . Such a protonation may enhance electrophilic properties, with the protonated form more susceptible to nucleophilic attack by the PR_3^{3-} . The k_{-1} term on the other hand is assigned to acid dissociation of H₂O ligands cis to μ_3 - (S^{2-}) or μ_3 - (Se^{2-}) (see below), which we suggest has the effect of activating the S_2^{2-} or Se_2^{2-} . Although the range of $[H^+]$

- (27) Fedin, V. P.; Sokolov, M. N.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. Polyhedron 1992, 11, 2395.
- (28) Doyle, J.; Sykes, A. G. J. Chem. Soc. A, 1967, 795.

values is quite extensive, no denominator terms corresponding to mass-balance considerations were observed. There is no clear-cut evidence for an [H⁺]-independent term corresponding to simultaneous protonation and deprotonation on any one cluster. Values of k_1 and k_{-1} indicate $\sim 10^3$ times greater reactivity of the S7 than Se7 cluster. This is attributed to different S_2^{2-} and Se_2^{2-} bond strengths and the relative affinities of PR₃³⁻ for S and Se. Surprisingly rate constants for PR₃³⁻ abstraction of Se from $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ are 10 times faster than for S abstraction from $[Mo_3S_7(H_2O)_6]^{4+}$ in 2.0 M Hpts. Since electro-negativities for S and Se are quite similar, it would appear that S-Se bonds are weaker than S-S and Se-Se bonds to explain this increase in reactivity. No corresponding reaction of [Mo₃Te₇(CN)₆]²⁻ with PR₃³⁻ (or CN⁻) is observed indicating stronger Te-Te bonds.

The Cl⁻ and Br⁻ substitution reactions of one H₂O on each Mo of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ provide information as to the substitution properties of H₂O ligands. Uniphasic kinetics are observed, and reaction can occur concurrently at three equivalent H₂O's one on each Mo^{IV} as in the case of $[Mo_3S_4(H_2O)_9]^{4+}$ and $[Mo_3Se_4(H_2O)_9]^{4+}$.^{5,9,29} No replacement of trans H₂O's is observed at the halide concentrations used in these studies. These observations are supported by the preparation of the partially substituted product [Mo₃S₇- $Br_3(NH_2Ph)_3]^+$ from $[Mo_3S_7Br_6]^{2-}$ with three N-donor atoms in the cis position.²¹ Selective formation of a single stereoisomer has also been observed in reactions with bidentate S. O donor ligands,^{30,31} when the S-donor occupies the cis position. In the present studies concentrated HCl or HBr is required to replace the three remaining trans H₂O's. The inertness of H₂O ligands trans to core μ_3 -(S²⁻) is a well-established feature with $[Mo_3S_4(H_2O)_9]^{4+29}$ and applies also in the case of $[Mo_3Se_4 (H_2O)_9$ ^{4+.9} Such effects have not yet been fully explained in terms of electron distribution within the clusters but presumably reflect the different donor properties of the μ_3 and μ_2 core ligands. In the S₄ and Se₄ clusters there are two cis H₂O ligands to each Mo, and formation of a conjugate base at one is able to further enhance substitution at the other. The observation that there are no similar $[H^+]^{-1}$ dependences applying in the case of Cl⁻ and Br⁻ substitutions on [Mo₃S₇(H₂O)₆]⁴⁺ and [Mo₃- $Se_7(H_2O_6)^{4+}$ can accordingly be explained by there being only one cis H₂O to each Mo.

The summary of rate constants, Table 2, indicates that in the case of $[Mo_3S_7(H_2O)_6]^{4+}$ k_f for Br⁻ is more reactive than Cl⁻ (but only by 13%). For Se the difference is greater, with Br⁻ 5 times more effective. Comparisons are possible with substitution at the Ni of $[Mo_3NiS_4(H_2O)_{10}]^{4+}$, when k_f values for Br⁻ $(14.6 \text{ M}^{-1} \text{ s}^{-1})$ and Cl⁻ $(9.4 \text{ M}^{-1} \text{ s}^{-1})$ give a similar ratio (1.6).¹⁶ The order of magnitude larger equilibrium constants, Table 2, for the softer halide ions (replacing H₂O) on the Se₇ as compared to S7 cluster (Se softer than S) is consistent with soft-hard acid-base theory.³²

Other comparisons to be made are with the substitution behavior of $[Mo_3Y_4(H_2O)_9]^{4+}$. Particularly relevant are the rate constants for Cl⁻ complexing to $[Mo_3S_7(H_2O)_6]^{4+}$ (1.83 × 10⁻⁴ $M^{-1}\ s^{-1})$ and $[Mo_3S_4(H_2O)_9]^{4+}\ (91\ M^{-1}\ s^{-1}),^{29}$ which differ by a factor of $\sim 2 \times 10^6$. Replacement of an H₂O cis to the μ_3 -(S²⁻) occurs in each case with [Cl⁻] in the range to 1.3 M.

- (30) Hegetschweiler, K.; Keller, T.; Bäumle, M.; Rihs, G.; Schneider, W. Inorg. Chem. 1991, 30, 4342.
- (31) Hegetschweiler, K.; Keller, T.; Zimmermann, H.; Schneider, W.; Schmalle, H.; Dubler, E. *Inorg. Chim. Acta.* **1990**, *169*, 235. (32) Pearson, R. G. *Inorg. Chim. Acta.* **1995**, *240*, 93 and references therein.

⁽²⁵⁾ Fedin, V. P.; Imoto, H.; Saito, T.; McFarlane, W.; Sykes, A. G. Inorg. Chem. 1995, 34, 5097.

⁽²⁶⁾ Fedin, V. P.; Mironov, Y. V.; Sokolov, M. N.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. Zh. Neorg Khim. 1992, 37, 2205.

⁽²⁹⁾ Richens, D. T.; Pittet, P.-A.; Merbach, A. E.; Humanes, M.; Lamprecht, G. J.; Ooi, B.-L.; Sykes, A. G. J. Chem. Soc. Dalton Trans. 1993, 2305.

A similar ratio applies in the case of Y = Se, based on the Cl⁻ study in this paper and data for NCS⁻ substitution on [Mo₃-Se₄(H₂O)₉]^{4+,9} These are remarkable effects of the Y₇ as opposed to Y₄ clusters, indicating that Cl⁻ is a much less effective nucleophile for the chalcogenide-rich clusters. The equilibrium constant (k_f/k_a) for complexing of Cl⁻ to [Mo₃S₇-(H₂O)₆]⁴⁺ (3.9 M⁻¹), Table 2, is very similar to that for [Mo₃S₄-(H₂O)₉]⁴⁺ (3.0 M⁻¹).²⁹ The high electron density on the μ -(S₂²⁻) ligands of [Mo₃S₇(H₂O)₆]⁴⁺, which will in part be delocalized onto the metals, appears to inhibit interaction with incoming nucleophiles for both k_f and k_{aq} . A similar but less extensive factor of ~55 has been observed for NCS⁻ substitution on [Nb₂(μ -S₂)₂(H₂O)₈]⁴⁺ as compared to [Nb₂(μ -S)₂(H₂O)₈]^{4+,33}

Reactions of the $Mo_3S_7^{4+}$ core with three metals (Sn, Ni, In) known to give heterometallic products with $[Mo_3S_4-(H_2O)_9]^{4+16,22-24}$ were also studied. There are at least two stages to the reactions. These are assigned to a reduction process involving the heterometal, with S–S cleavage and H₂S evolution. The heterometal then reacts with the $[Mo_3S_4(H_2O)_9]^{4+}$ to give products as previously described.^{16,22-24} It is not clear whether adducts, e.g. $Mo_3Sn_7^{4+}$, are involved in these changes.

To summarize new chalcogenide-rich clusters $[Mo_3S_7(H_2O)_6]^{4+}$, $[Mo_3Se_7(H_2O)_6]^{4+}$, and $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ have been prepared for the first time. Processes investigated include S and Se

abstraction of the equatorial atom of dichalcogenido μ -(Y₂²⁻) core ligands by phosphine and CN⁻ to give [Mo₃Y₄(H₂O)₉]⁴⁺ and [Mo₃Y₄(CN)₉]⁵⁻ products (Y = S, Se), respectively. Studies on [Mo₃S₄Se₃(H₂O)₉]⁴⁺, when abstraction of equatorial Se's is observed, indicate the mechanism of abstraction. X-ray crystallographic information also favors equatorial abstraction because in e.g. the Mo₃S₇ core the Mo–S_{eq} distance is 0.1 Å longer than Mo–S_{ax}. The [H⁺] dependencies of the reactions provide further behavioral insight into the aqueous solution chemistry of these chalogenide-rich clusters. The [Mo₃S₇-(H₂O)₆]⁴⁺ and [Mo₃Se₇(H₂O)₆]⁴⁺ clusters are both (H₂O) substitution inert (t_{1/2} < 1 min) at 25 °C. Rate constants for Cl⁻ substitution on the S-rich cluster [Mo₃S₇(H₂O)₆]⁴⁺ are a very significant ~2 × 10⁶ times smaller than those observed for [Mo₃S₄(H₂O)₆]⁴⁺.

Acknowledgment. We are grateful to the University of Newcastle for support (D.M.S.), the Royal Society for a Kapitza Fellowship (V.P.F.), and the U.K. Engineering and Physical Sciences Research Council for a Research Grant (G.J.L. and M.N.S.).

Supporting Information Available: Listings of rate constants for the PR_3^{3-} chalcogenide-abstraction reactions and Cl^- and Br^- substitution reactions and one figure relating to the PR_3^{3-} studies (11 pages). Ordering information is given on any current masthead page.

IC961343U

⁽³³⁾ Sokolov, M. N.; Hernandez-Molina, R.; Elsegood, M. R. J.; Health, S. C.; Clegg, W.; Sykes, A. G. J. Chem. Soc., Dalton Trans., in press.