Preparation and Solution Properties of Chalcogenide-Rich Clusters $[Mo_3Y_7(H_2O)_6]^{4+}$ (Y = **S, Se):** Kinetics of PR_3^3 ⁻ Abstraction of Y from μ - (Y_2^2) and H_2O Substitution by Cl⁻ and **Br**-

David M. Saysell, Vladimir P. Fedin, Gert J. Lamprecht, Maxim N. Sokolov, and A. Geoffrey Sykes*

Department of Chemistry, The University of Newcastle, Newcastle upon Tyne NE1 7RU, U.K.

Received November 6, 1996[®]

The chalcogenide-rich trinuclear Mo^{IV}₃ clusters $[Mo₃Y₇(H₂O)₆]$ ⁴⁺, containing single μ_3 -(Y²⁻) and three μ -(Y₂²⁻) core ligands, have been obtained for the first time from polymeric ${M_0}^3Y_7Br_4$ ^{*x*} via ${M_0}^3Y_7Br_6$ ²⁻ (Y = S, Se). ICP analyses of 2 M HCl solutions give Mo:S and Mo:Se ratios consistent with the formulas indicated, and on reaction with concentrated HBr, 85% recovery of $(Et_4N)_2[M_0s_3T_6R_6]$, the structure of which is known, has been achieved. Abstraction of S and Se with PPh₃ (two-phase system), or the water-soluble phosphine $(3\text{-}SO_3C_6H_4)3P_3$ ⁻³ (PR_3^3) , gives quantitative formation of $[Mo_3S_4(H_2O)_9]^{4+}$ and $[Mo_3Se_4(H_2O)_9]^{4+}$. With CN⁻, both abstraction of S (or Se) and CN⁻ replacement of H₂O is observed, giving $[Mo₃S₄(CN)₉]⁵⁻$ and $[Mo₃Se₄(CN)₉]⁵⁻$ as products. It was possible to assign which atom of the sideways η^2 , η^2 μ -(S₂^{2–}) and μ -(Se₂^{2–}) ligands is abstracted using the structurally characterized $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ cluster. Thus it was demonstrated that with the phosphines the equatorial (to the Mo₃ plane) Se atoms of the three μ -(SSe²⁻) groups are removed with formation of the Mo₃S₄⁴⁺ core. Kinetic studies on the reactions of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ with PR₃³⁻ give ~10³ faster abstraction rate constants (k_a/M^{-1} s⁻¹) for S than Se. The rate law $k_a = k_1[H^+] + k_{-1}[H^+]^{-1}$ is explained by the involvement of protonated μ -(Y₂²⁻) (k_1) and an H₂O conjugate-base form (k_{-1}). Equilibration rate constants for $X^- = Cl^-$ and Br⁻ substitution of H₂O on $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ are however independent of $[H^+]$ in the range 0.5-2.0 M investigated. With X⁻ concentrations up to 1.3 M (S cluster) and 0.3 M (Se), the uniphasic reactions are assigned as substitution of the H₂O cis to μ_3 -(Y²⁻) at each Mo. At 25 °C formation rate constants $10^4k_f/M^{-1}$ s⁻¹ are as follows for $[Mo_3S_7(H_2O)_6]^{4+}$: Cl⁻ (1.83); Br⁻ (2.07). The same rate constants are as follows for $[Mo_3Se_7(H_2O)_6]^{4+}$: Cl⁻ (6.7); Br⁻ (33). Formation rate constants for Cl⁻ are surprisingly 2 \times 10⁶ times slower than for the reaction of $[Mo_3S_4(H_2O)_9]^{4+}$ with Cl⁻. Reactions of $Mo_3S_7^{4+}$ with three metals (Sn, Ni, In) were studied briefly.

Introduction

The Mo^{IV} ₃ incomplete cuboidal cluster $[Mo_3S_4(H_2O)_9]^{4+}$ with a vacant metal subsite, first characterized in the $1980's$, $1-4$ has been extensively studied.⁵⁻⁷ In acidic solutions the aqua ion is noted for its high stability over long periods (years!), with no tendency to lose core atoms or undergo redox changes. The selenium-containing analogue $[Mo_3Se_4(H_2O)_9]^{4+}$ has also been fully characterized. $8,9$ In this paper we report the preparation of new chalcogenide-rich Mo^{IV} ₃ clusters $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo₃Se₇(H₂O)₆]$ ⁴⁺ from polymeric chain compounds {Mo₃Y₇- Br_4 [}]*x* via the single clusters $[M_0y_7Br_6]^{2-}$ (Y = S, Se). Procedures for the conversion of ${Mo_3Y_7Br_4}_x$, obtained by

- (3) Shibahara, T.; Kuroya, H. *Polyhedron* **1986**, *5*, 357.
- (4) Martinez, M.; Ooi, B.-L.; Sykes, A. G. *J. Am. Chem. Soc*. **1987**, *109*, 4615.
- (5) Ooi, B.-L.; Sykes, A. G. *Inorg. Chem*. **1989**, *28*, 3799.
- (6) Shibahara, T. *Ad*V*. Inorg. Chem*. **1991**, *37*, 143-173.
- (7) Saysell, D. M.; Sokolov, M. N.; Sykes, A. G. In *Sulfur Coordinated Transition-Metal Complexes*; Stiefe, E., Matsumoto, K., Eds.; ACS Symposium Series No. 653, Pacific Chem. 95 Meeting, Honolulu; American Chemical Society: Washington, DC, 1996; pp 216-224.
- (8) Nasreldin, M.; Henkel, G.; Kampmann, G.; Krebs, B.; Lamprecht, G. J.; Routledge, C. A.; Sykes, A. G. *J. Chem. Soc., Dalton Trans*. **1993**, 737.
- (9) Lamprecht, G. J.; Martinez, M.; Nasreldin, M.; Routledge, C. A.; Al-Shatti, Sykes, A. G. *J. Chem. Soc., Dalton Trans*. **1993**, 747.

Figure 1. Structure representation of $[M_03S_7(H_2O)_6]^{4+}$ based on that of $[Mo₃S₇Br₆]²⁻$ determined by X-ray crystallography.

direct combination of the elements, into $[Mo₃Y₇Br₆]²⁻$ have been described.¹⁰⁻¹² An X-ray structure of $(Ph_4P)_2[Mo_3S_7Cl_6]$ has been reported, and $(Ph_4P)_2[Mo_3S_7Br_6]$ is known to be isostructural.¹³ Both clusters have a single μ_3 -sulfido and three *µ*-disulfido bridging ligands orientated as in Figure 1. Each disulfido group bridges two Mo's in a sideways *η*2:*η*² manner

- (10) Fedin, V. P.; Mironov, Y. V.; Sokolov, M. N.; Kolesov, B. A.; Tkachev, S. V.; Fedorov, V. Y. *Inorg. Chim. Acta*. **1990**, *167*, 39.
- (11) Fedin, V. P.; Sokolov, M. N.; Geras'ko, O. A.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. *Inorg. Chim. Acta* **1991**, *187*, 81.
- (12) Fedin, V. P.; Sokolov, M. N.; Myakishev, K. G.; Geras'ko, O. A.; Fedorov, V. Y.; Macichek, J. *Polyhedron* **1991**, *10*, 1311.
- (13) (a) Virovets, A. V.; Slovohotov, Y. L.; Struchkov, Y. T.; Fedorov, V. Y. Naumov, N. G.; Geras'ko, O. A.; Fedin, V. P. *Koard. Khim*. **1990**, *16*, 332. (b) Fedin, V. P. Unpublished work.

^X Abstract published in *Ad*V*ance ACS Abstracts,* May 15, 1997.

⁽¹⁾ Müller, A.; Jostes, R.; Eltzner, W.; Nie, C.-S.; Diemann, E.; Bögge, H.; Zimmerman, M.; Dartmann, D.; Reinsch-Vogell, U.; Che, S.; Cyvin, S. J.; Cyvin, B. N. *Inorg. Chem*. **1985**, *24*, 2872.

⁽²⁾ Cotton, F. A.; Dori, Z.; Llusar, R.; Schwortzer, W. *Inorg. Chem*. **1986**, *25*, 3654.

with one atom equatorial and the other axial to the $Mo₃$ plane, distances $Mo-S_{eq}$ 2.5 Å and $Mo-S_{ax}$ 2.4 Å.¹⁴ There are two nonidentical terminal ligands $(H₂O)$ in the present studies) to each Mo, which are cis and trans respectively to the μ_3 -(S²⁻) ligand. The structure of $[Mo_3Se_7(dtc)_4]$ (dtc = diethyldithiocarbamate) has also been determined, 11 and a similar core structure is indicated. We explore here the aqueous solution chemistry of the chalcogenide-rich $[M₀₃Y₇(H₂O)₆]⁴⁺$ clusters, making comparisons in particular with $[Mo₃Y₄(H₂O)₉]^{4+}$, which has three terminal H_2O 's to each Mo.

Experimental Section

Starting Materials. To prepare the polymeric chain compounds {Mo3Y7Br4}*^x* the elements were heated in a glass ampule made from Mo glass or quartz, with diameter ∼2 cm, volume ∼40 mL, and wall \sim 1 mm thick. Typical amounts were Mo (4 g), Se (7.44 g), and Br₂ (1.44 mL). The Br_2 must first be dried over concentrated H_2SO_4 . The ampule was placed in a variable-temperature oven at 340-380 °C for at least 48 h. The temperature was raised gradually to 150 (∼3 h), 200 °C (∼3 h), etc., and the ampule was contained in a steel tube for safety. The compound $(Et_4N)_2$ $[Mo_3S_7Br_6]$ was prepared from $\{Mo_3S_7$ - Br_4 ^{χ} by first converting to $(NH_4)_{2}$ [Mo₃S₁₃] and then treating with concentrated HBr and Et4NBr as described.10 For the Se analogue {Mo3Se7Br4}*^x* and PPh4Br (2 g per 1 g of complex) were melted together at 250 °C and heated for ∼3 h under N₂ to obtain (Ph₄P)₂[Mo₃Se₇- Br_6 ¹¹ The solid was powdered and washed with hot EtOH. The mixed S- and Se-containing cluster $(Et_4N)_2[Mo_3S_4Se_3Br_6]$ was prepared by reacting $(Et_4N)_2[Mo_3S_7Br_6]$ with Ph₃PSe (replacement of S on S_2^{2-} by Se) as described.¹⁵ All reactions were carried out in a fumehood.

Other Reagents. These included *p*-toluenesulfonic acid (Hpts) (CH3C6H4SO3H), lithium carbonate (Li2CO3), triphenylphosphine, HBr (all from Aldrich), HCl (Fisons), and the water-soluble salt of tris(3 sulfonatophenyl)phosphine, $Na_3[(3-SO_3C_6H_4)_3P]$ ⁻⁴H₂O (Strem Chemicals), here abbreviated to PR_3^3 , all of which were used as supplied. The latter contains 10.3% phosphine oxide,¹⁶ which is nonreactive and was allowed for in determining concentrations of PR_3^{3-} made up by weight. Solution of Li(pts) were prepared by $Li₂CO₃$ neutralization of Hpts and recrystallizing. All other chemicals used were of analytical grade purity. Metals used were tin (∼3 mm diameter shot; Aldrich), nickel (1 mm diameter wire; Wiggin), and indium (3 mm diameter wire; Johnson Matthey).

Elemental Analyses. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses for Mo and S or Se were carried out on 2 M HCl solutions.

Kinetic Studies. The temperature was 25.0 ± 0.1 °C, and *I* was adjusted to 2.00 ± 0.01 M (Lipts) for all runs. Solutions of $[Mo₃S₇(H₂O)₆]⁴⁺$ and $[Mo₃Se₇(H₂O)₆]⁴⁺$ were stored under N₂, to avoid a slow reaction with O2. Kinetic runs could be carried out in air and were in agreement with experiments carried out under N_2 . Stock solutions were eluted in \geq 2.0 M Hpts, which limited the lower range of $[H^+]$ that could be explored. Stopped-flow time-range experiments (reactions with PR_3^{3-}) were carried out on Dionex-D110 and Applied Photophysics instruments. The latter (shorter mixing time) was essential for the faster $[Mo₃S₇(H₂O)₆]$ ⁴⁺ studies. Rate constants were obtained on the Dionex stopped-flow using fitting procedures from On-Line Instrument Systems (OLIS, Bogart, GA) and on the Applied Photophysics instrument using a multitask software package as supplied. Individual rate constants quoted are an average of at least five traces. Conventional studies $(Cl^-$ and Br^- substitution) were performed using a Philips-Unicam PU 8740 spectrophotometer.

Treatment of Rate Constants. Unweighted linear least-squares fitting procedures were used.

Figure 2. UV-vis spectra of (a) $[M_0S_7(H_2O)_6]^{4+}$ (-) and $[M_0S_7]^{4+}$ $S_4(H_2O)_9]^{4+}$ (---) and (b) $[M_0{}^3Se_7(H_2O)_6]^{4+}$ (-) and $[M_0{}^3Se_4(H_2O)_9]^{4+}$ (- - -) in 2.0 M Hpts.

Results

Preparation and Characterization of M_0 **₃S₇(H₂O)₆]⁴⁺. The** procedure used was to aquate the dark brick-red $(Et_4N)_2[M_0sS_7 Br_6$] salt $(0.2 \text{ g})^{10}$ in 4 M *p*-toluenesulfonic acid (Hpts; 25 mL) for 3 h at room temperature, when a clear yellow solution was obtained.17 This was diluted with a 3-fold volume of water and loaded onto a Dowex 50W-X2 cation-exchange resin. The compact band formed was eluted as a lemon yellow solution with \geq 2 M Hpts, consistent with a 4+ charge. ICP-AES analyses on a sample eluted with 2 M HCl gave an Mo:S ratio of 3:7.3. UV-vis absorbance spectra, confirmed by quantitative conversion to $[Mo₃S₄(H₂O)₄]⁴⁺$ as in (1) below, gave shoulders only at λ /nm (ϵ /M⁻¹ cm⁻¹ per Mo₃) ~350 (1800) and ~425 (500), Figure 2. Beer's Law is obeyed at 350 nm with concentrations in the range 0.06-1.9 mM investigated. Stock solutions of $[Mo_3S_7(H_2O)_6]^{4+}$ (3-4 mM) are stable for several weeks in 2.0 M Hpts or HCl under N₂ and give only ∼10% decay over 12 h in air at \sim 20 °C. However in 2.0 M HClO₄ a more rapid decay is observed, yielding a precipitate which is most likely sulfur.

To characterize the $[Mo₃S₇(H₂O)₆]$ ⁴⁺ product a solution in 2.0 M Hpts was stirred with 5% triphenylphosphine, PPh3, in dichloromethane (5 mL). Reaction is fast, and the color becomes green in less than 1 min. The organic layer was removed, the green aqueous solution diluted 5-fold with water, and the product loaded onto a Dowex 50W-X2 column (15 \times 1.2 cm diameter). After washing with 0.2 M acid (200 mL), elution was with the same 2.0 M acid. The conversion could also be achieved using the water-soluble phosphine PR_3^{3-} (R $=$ 3-sulfonatophenyl), as the sodium salt $\text{Na}_3[(3\text{-}SO_3C_6H_4)_3\text{P}]$. 4H2O. In both cases the product was the well-characterized $[Mo₃S₄(H₂O)₉]⁴⁺$, with UV-vis absorbance peak positions $[\lambda/mm (\epsilon/M^{-1} \text{ cm}^{-1} \text{ per Mo}_3)]$ 366 (5550) and 603 (362) in 2.0 M Hpts, Figure 2, indicating an S-abstraction process as in (1), with formation of triphenylphosphine sulfide.

$$
Mo_{3}S_{7}^{4+} + 3PR_{3}^{3-} \rightarrow Mo_{3}S_{4}^{4+} + 3SPR_{3}^{3-}
$$
 (1)

It was also possible to convert the $[Mo₃S₇(H₂O)₆]⁴⁺$ product into the previously characterized $[Mo_3S_4(CN)_9]^{5-}$ by reloading onto a Dowex column (10×1.2 cm diameter) and after washing with H_2O (200 mL) eluting with 0.1 M KCN. The product was identified as $[Mo₃S₄(CN)₉]⁵⁻$ from the UV-vis peaks at

⁽¹⁴⁾ Meienberger, M. D.; Hegetschweiler, K.; Gielgger, H.; Gramlich, V. *Inorg. Chim. Acta* **1993**, *213*, 157.

⁽¹⁵⁾ Fedin, V. P.; Mironov, Y. V.; Sokolov, M. N.; Kolesov, B. A.; Fedorov, V. Y.; Yufit, D. S.; Struchkov, Y. T. *Inorg. Chim. Acta* **1990**, *174*, 275.

⁽¹⁶⁾ Saysell, D. M.; Borman, C. D.; Kwak, C.-H.; Sykes, A. G. *Inorg. Chem*. **1996**, *35*, 173.

⁽¹⁷⁾ Fedin, V. P.; Lamprecht, G. J.; Sykes, A. G. *J. Chem. Soc. Chem. Commun*. **1994**, 2685.

247 (17 000), 280 sh, 342 (4500), 377 (5500), and 610 (500).¹ The reaction involves core S_2^2 abstraction (eq 2) and substitu-

$$
Mo_{3}S_{7}^{4+} + 3CN^{-} \rightarrow Mo_{3}S_{4}^{4+} + 3SCN^{-}
$$
 (2)

tion of H_2O ligands by CN^- . Similar conversions can be carried out by treating a suspension of ${Mo_3S_7Br_4}_x$ (1 g in 10 mL of H₂O), or a solution of [Mo₃S₇Br₆]²⁻, with KCN (1 g) for ~60 min. Reactions are summarized in Scheme 1. On addition of SCN⁻ (0.1 M) to $[Mo₃S₇(H₂O)₆]$ ⁴⁺ in Hpts side reactions contribute and a cream-colored precipitate (most likely sulfur) is formed. This compares with addition of NCS^- (1 M) to $[Mo₃S₄(H₂O)₉]⁴⁺$, when formation of $[Mo₃S₄(NCS)₉]⁵⁻$ is observed in a clean reaction.

Retention of the $Mo₃S₇$ core was confirmed by eluting the aqua ion with 2 M HBr, evaporating to dryness on a vacuum line, and redissolving in concentrated HBr. Only under these extreme conditions do six bromides coordinate. Addition of excess Et4NBr resulted in the formation of orange crystals of $(Et_4N)_2[Mo_3S_7Br_6]$ (85% yield),¹⁰ which was characterized by its infrared spectrum.

Preparation and Characterization of $[M_0{}^3S_0{}^2({}^H{}_2O)_6]^{4+}$ **.** A similar procedure applies involving in this case the aquation of brown (PPh₄)₂[Mo₃Se₇Br₆] (0.5 g)¹¹ in 4 M Hpts (25 mL) for 10 h at room temperature. On filtration an orange solution was obtained which was diluted 5-fold with H2O and loaded onto a Dowex 50W-X2 cation-exchange column. The compact band formed was eluted as an orange solution with 4 M Hpts. Elution was also possible with 2 M HCl. ICP analyses on the latter gave a ratio Mo:Se of 3:6.8 consistent with $[Mo₃Se₇$ $(H_2O)_6$ ⁴⁺. UV−vis spectra gave shoulders at ~370 (1150) and ∼480 (200), Figure 2. Solutions were stable in air for a few hours, but over longer periods red selenium was deposited. Solutions were stable under N₂ at ∼20 °C for several weeks (<10% decomposition). Beer's law was obeyed at [∼]430 nm for solutions in the range $0.10-0.70$ M investigated. Solutions of $[Mo_3Se_7(H_2O)_6]^{4+}$ were converted into $[Mo_3Se_4(H_2O)_9]^{4+}$ by procedures as described for $[Mo₃S₇(H₂O)₆]⁴⁺$. The reactions with the phosphines are appreciably slower; e.g., with $PPh₃$ 40 min is required. UV-vis peaks for $[Mo₃Se₄(H₂O)₉]^{4+}$ in 2 M Hpts are at 425 (2460) and 648 (263), Figure 2. Spectra exhibit a red shift on replacing S by Se as has been observed previously for Se-substituted [2Fe-2S] proteins.¹⁸ Elution of [Mo₃Se₇- $(H_2O)_6$ ⁴⁺ from a Dowex column with 0.1 M KCN gives conversion to $[Mo_3Se_4(CN)_9]^{5-}$, with UV-vis peak positions 350 (5070), 443 (5460), and 677 (730). The X-ray structure of Cs3[Mo3Se4(CN)9]'CsCl'4H2O has been determined.19 Scheme 1 indicated above applies also for $Y = Se$.

⁽¹⁹⁾ Fedin, V. P.; Lamprecht, G. J.; Kohzuma, T.; Clegg, W.; Elsegood, M. R. J.; Sykes, A. G. *J. Chem. Soc. Dalton Trans*., in press.

Figure 3. Dependence of first-order rate constants k_{obs} (25 °C) for the reaction of the water-soluble phosphine (PR_3^{3-}) with $[Mo_3S_7(H_2O)_6]^{4+}$ on [PR₃³⁻] (reactant in excess) at [H⁺]/M = 2.0 (×), 1.5 ([•]), 1.00 (\blacksquare), 0.60 (\blacktriangledown), and 0.30 (\blacktriangle), with $I = 2.00$ M (Li(pts)).

Table 1. Summary of Second-Order Rate Constants *k* (25 °C) for the S- and Se-Abstraction Reactions of PR_3^{3-} with $[Mo_3S_7(H_2O)_6]^{4+}$, $Y = S$ and Se $[I = 2.00$ M (Li(pts))]

$5 - 0.000$	$= 0.00111$, $= 1.0011$			
$Y = S$		$Y = Se$		
$[H^+]/M$	$10^{-4}k_{\rm s}$ /M ⁻¹ s ⁻¹	$[H^+]/M$	$k_{\rm a}$ /M ⁻¹ s ⁻¹	
2.00	7.8(3)	2.00	59(8)	
1.50	6.2(2)	1.50	52(3)	
1.00	5.9(1)	0.75	74(2)	
0.60	7.4(1)	0.60	77(1)	
0.30	9.4(5)	0.50	86(8)	

Preparation and Reactivity of $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ **with PR₃^{3–}.** The compound (PPh₃Et)₂[Mo₃S₄Se₃Cl₆]¹⁸ has been prepared previously, and an X-ray structure has demonstrated the presence of μ_3 -(S²⁻) and three μ -(SSe²⁻) core ligands, with Se in the same equatorial plane as the three Mo atoms. In this work the $(Et_4N)_2[Mo_3S_4Se_3Br_6]$ salt was used. On treatment with 4 M Hpts the aqua ion $[Mo₃S₄Se₃(H₂O)₆]⁴⁺$ forms, and on reaction of a 4 mM solution (5 mL) with 3% PPh₃ (5 mL) in chloroform, the color becomes green in $1-2$ min. After 1 h the green upper layer was separated, and the $UV-vis$ spectrum was shown to be that of $[Mo₃S₄(H₂O)₉]⁴⁺$. The same abstraction process is observed on elution of $[Mo₃S₄Se₃(H₂O)₆]⁴⁺$ from a cation-exchange column with CN^- , when $[Mo₃S₄(CN)₉]^{5-}$ was identified as the only product from its UV-vis spectrum.

Kinetics of the Reactions of $[Mo_3S_7(H_2O)_6]^{4+}$ **and** $[Mo_3Se_7$ **-** $(\mathbf{H}_2\mathbf{O})_6$ ⁴⁺ with \mathbf{PR}_3 ³⁻. Stopped-flow studies were on aqueous pts⁻ solutions, $I = 2.00$ M (Lipts), with $[PR_3^3$ ⁻] in >10-fold excess of the trinuclear complex. The stoichiometry of the reaction is 3:1, eq 1. Some runs were carried out at less than the 10-fold excess condition in an attempt to detect a backreaction (not observed). Uniphasic absorbance changes are observed with quantitative formation of $[Mo₃S₄(H₂O)₉]^{4+}$ and $[Mo₃Se₄(H₂O)₉]⁴⁺$, respectively. First-order rate constants k_{obs} (25 °C) determined at 366 nm (S) and 425 nm (Se) are listed in the Supporting Information. Runs with $[Mq_3S_7(H_2O)_6]^{4+}$ were fast and at the limit of the stopped-flow range. Linear dependencies as in Figure 3 enable second-order rate constants *k*^a for the S and Se abstraction processes to be determined, Table 1. Variations of k_a with $[H^+]$ are illustrated in Figure 4. A two-term rate law (3) is suggested. This can be rearranged to

$$
k_{\rm a} = k_1[\text{H}^+] + k_{-1}[\text{H}^+]^{-1} \tag{3}
$$

(4). For each reaction linear plots of $k_a[H^+]$ against $[H^+]^2$ are obtained (figure in the Supporting Information). From these

Figure 4. Variation of second-order rate constants k_a with [H⁺] for the PR₃^{3–} chalcogenide-abstraction reactions from $[Mo_3S_7(H_2O)_6]^{4+}$ (\blacktriangle) and $[Mo_3Se_7(H_2O)_6]^{4+}$ (\bullet), with $I = 2.00$ M (Li(pts)).

$$
k_a[\text{H}^+] = k_1[\text{H}^+]^2 + k_{-1}
$$
 (4)

 $k_1 = 3.14(15) \times 10^4 \text{ M}^{-2} \text{ s}^{-1}$ and $k_{-1} = 2.78(48) \times 10^4 \text{ s}^{-1}$ for $[Mo₃S₇(H₂O)₆]⁴⁺$ and $k₁ = 19.0(13)$ M⁻² s⁻¹ and $k₋₁ = 40(4)$ s^{-1} for $[Mo_3Se_7(H_2O)_6]^{4+}$. We cannot entirely exclude contributions from a term independent of $[H^+]$ to (3), but k_1 and k_{-1} have different origins, and the best fit of data is according to (4). For consistency with the statistical factor approach adopted elsewhere, rate constants have been divided by a factor of 3 to allow for concurrent reaction at three identical S_2^2 (or Se_2^2) centers.^{5,20} From four runs, $[PR_3^3]$ in the range $0.72 - 1.44$ mM, k_a for the reaction of $[Mo_3S_4Se_3(H_2O)_7]^{4+}$ with PR_3^{3-} is $1.48(4) \times 10^5$ M⁻¹ s⁻¹ in 2.0 M Hpts.

Kinetics of Cl⁻ and Br⁻ Substitution on $[Mo₃S₇(H₂O)₆]^{4+}$ **and** $[Mo_3Se_7(H_2O)_6]^{4+}$ **. Experiments already referred to, and** those reported in ref 21, indicate three identical cis H_2O 's at which complexation is more favorable than for the trans $H_2O's$. Consistent with these observations uniphasic absorbance changes were observed and monitored by conventional UV-vis spectrophotometry. The dependence of equilibration rate constants k_{eq} at 25 °C (for listing see Supporting Information) with halide (X^-) concentrations to 1.3 M (S) and 0.3 M (Se), as illustrated in Figure 5. The shape of UV-vis spectra does not change on complexing with X^- (the two shoulders are retained, Figure 2), consistent with retention of $Mo₃S₇$ and $Mo₃Se₇$ core structures. The linear dependencies in Figure 5 define formation (k_f) and aquation rate constants (k_{aq}) (eq 5). UV-vis absorbance

$$
k_{\text{eq}} = k_{\text{f}}[X^{-}]/3 + k_{\text{aq}} \tag{5}
$$

changes were not large enough to monitor reactions with the clusters in \geq 10-fold excess of [X⁻]. However since three cis H₂O's participate in the first phase of reaction at $I = 2.00$ M (Li(pts)), a statistical factor of 3 is included in (5), consistent with procedures established previously for substitution on e.g. $[M_0$ ₃S₄(H₂O)₉]⁴⁺ and $[M_0$ ₄S₄(H₂O)₁₂]⁵⁺.^{5,20} Values of k_f and *k*aq are listed in Table 2. No evidence was obtained for substitution at the more inert trans H_2O ligands at the $[X^-]$ values used in this study.

Other Reactions. Reactions with three metals were investigated under O_2 -free conditions (N₂). The reaction of [Mo₃S₇- $(H_2O)_6$ ⁴⁺ with Sn shot gives color changes first to brown (15)

Figure 5. Dependence of equilibration rate constants k_{eq} (25 °C) on halide (X^-) concentration (reactant in excess) for the reaction of (A) $[Mo₃S₇(H₂O)₆]⁴⁺, X⁻ = Cl⁻, with [H⁺]/M = 2.00 (**v**), 1.00 (∇ , and$ $0.50 \times$ and, X^- = Br⁻, with [H⁺]/M = 2.00 (■), 1.00 (□), and 0.50 $(+)$, $I = 2.00$ M (Li(pts)), and (B) [Mo₃Se₇(H₂O)₆]⁴⁺, $X^- = Cl^-$, with $[H^+]/M = 2.00$ (\bullet), 1.00 (O), and 0.50 (\times) and, $X^- = Br^-$, with $[H^+]/M$ $M = 2.00$ (\bullet), 1.00 (\circ), and 0.50 ($+$), $I = 2.00$ M (Li(pts)).

Table 2. Summary of Formation (k_f) and Aquation (k_{aa}) Rate Constants at 25 °C from Equilibration Substitution of \dot{Cl}^- and Br⁻ for H₂O on $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ [*I* = 2.00 M (Li(pts))]

reacn	$10^4k_f/M^{-1}$ s ⁻¹	$10^4k_{\rm a0}/\rm s^{-1}$	$k_{\rm f}/k_{\rm ao}/\rm M^{-1}$
$Mo_3S_7^{4+} + Cl^-$	1.83(9)	0.47(24)	3.9
$Mo_3S_7^{4+} + Br^-$	2.07(22)	1.6(2)	1.29
$M\omega_3$ Se ₇ ⁴⁺ + Cl ⁻	6.7(3)	0.38(20)	17.6
$Mo_3Se_7^{4+} + Br^-$	33(1)	2.8(7)	11.8

min) and then a dark reddish-brown. The reaction was complete in [∼]8 h when the UV-vis spectrum indicated [∼]80% formation of $[Mo_6SnS_8(H_2O)_{18}]^{8+}$ with peak positions at 322, 372, and 543 nm.22

Reactions of $[Mo₃S₇Br₆]²⁻$ in 2 M HCl with Ni (20 h at 55 °C) and In wire (15 h at 20 °C), gave 60% $Mo₃NiS₄⁴⁺$ and \sim 100% Mo₃InS₄⁵⁺, respectively, identified from know UVvis spectra.^{16,23,24} Evolution of H_2S was detected in all three cases, and reduction of μ -(S₂^{2–}) with S-S cleavage is indicated. Heterometal addition occurs in each case to give products previously identified.⁷ If instead of a metal with $[Mo₃S₇Br₆]²$ in 2 M HCl tetrahydroborate BH_4^- is used in an attempt to

(24) Sakane, G.; Shibahara, T. *Inorg. Chem*. **1993**, *32*, 777.

⁽²⁰⁾ Li, Y. J.; Nasreldin, M.; Humanes, M.; Sykes, A. G. *Inorg.Chem*. **1992**, *31*, 3011.

⁽²¹⁾ Fedin, V. P.; Mironov, Y. V.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. *Polyhedron*, **1992**, *11*, 2083.

⁽²²⁾ Varey, J. E.; Lamprecht, G. J.; Fedin, V. P.; Holder, A.; Clegg, W.; Elsegood, M. R. J.; Sykes, A. G. *Inorg. Chem*. **1996**, *35*, 5525.

Sokolov, M. N.; Hernandez-Molina, R.; Saysell, D. M.; Sykes, A. G. Manuscript in preparation.

bring about the same μ - $(S_2^{2-}) \rightarrow \mu$ - (S_2^{2-}) conversion, the yield of $[Mo₃S₄(H₂O)₉]^{4+}$ and related $Mo₃S₄$ core products is only small (\sim 3%).

Discussion

The preparation and properties of chalcogenide-rich clusters as the aqua ions $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ are described for the first time. Analyses for Mo:S and Mo:Se ratios by ICP-AES are consistent with the formulas indicated. The structures of $[Mo_3S_7Cl_6]^{2-}$ and $[Mo_3S_7Br_6]^{2-}$ have been determined,¹³ and retention of the $Mo₃S₇$ core in the aqua ion product was confirmed by re-formation of $(Et_4N)_2[M_03S_7Br_6]$ (85%) yield). The structure of $[Mo₃Se₇(dtc)₄]$ has also been determined.¹¹ The first complex with an $Mo₃Te₇$ core has recently been reported as the cyano complex $[M₀₃Te₇(CN)₆]²⁻₂²⁵ but$ no route to the corresponding chloro/ bromo or aqua complexes has yet been identified. The $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7 (H_2O)_6$ ⁴⁺ aqua ions are reasonably stable in air but for storage purposes require an inert (N_2) atmosphere. Decay processes are observed on addition of NCS⁻ to $[Mo₃S₇(H₂O)₆]$ ⁴⁺ in Hpts and for $[Mo_3S_7(H_2O)_6]^{4+}$ in 2 M HClO₄, and such conditions were therefore avoided for both the S_7 and Se_7 clusters.

As part of the characterization of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3 \text{Se}_7(\text{H}_2\text{O})_6$ ⁴⁺, reactions with triphenylphosphine (PPh₃) and the water-soluble tris(3-sulfonato-phenyl)phosphine (PR_3^3) were studied. The products $[Mo_3S_4(H_2O)_9]^{4+}$ and $[Mo_3Se_4(H_2O)_9]^{4+}$ were identified from known UV-vis spectra. Elution of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ from a Dowex cationexchange column with 0.1 M CN⁻ also resulted in chalcogenide abstraction, with CN^- replacement of H_2O ligands occurring to give $[Mo_3S_4(CN)_9]^{5-}$ and $[Mo_3Se_4(CN)_9]^{5-}$. These products were likewise identified from their UV-vis spectra.

The mixed-chalcogenide analogue $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ has one μ_3 -(S²⁻) and three μ -(SSe²⁻) core ligands. An X-ray crystal structure on the precursor complex $[Mo₃S₄Se₃Br₆]²⁻$ has demonstrated that the Se atoms of the μ -(SSe²⁻) ligands are equatorial.^{15,26,27} Reaction of the aqua ion with PR_3^{3-} gives $[Mo₃S₄(H₂O)₉]$ ⁴⁺ as the sole product, and in the case of $[Mo₃S₇(H₂O)₆]$ ⁴⁺ and $[Mo₃Se₇(H₂O)₆]$ ⁴⁺ abstraction of the equatorial atom of μ -(S₂²⁻) and μ -(Se₂²⁻) is therefore proposed. The same conclusion has been arrived at using $34S$ isotopic labeling on $Mo₃S₇⁴⁺$.¹⁰ Thus the precise mechanism of phosphine abstraction is reasonably well established.

There have been no previous kinetic/mechanistic studies on phosphine chalcogenide abstraction reactions from Y_2^2 . Uniphasic kinetics are observed for the abstraction reactions $[Mo₃S₇]$ $(H_2O)_6$]⁴⁺ \rightarrow [Mo₃S₄(H₂O)₆]⁴⁺ and [Mo₃Se₇(H₂O)₆]⁴⁺ \rightarrow [Mo₃- $Se_4(H_2O)_6]^{4+}$, with PR_3^{3-} the reactant in large excess. Rate laws of the form $k_a = k_1[H^+] + k_{-1}[H^+]^{-1}$ are observed, which are somewhat unusual. Both terms are larger than would normally be observed for medium effects.²⁸ The k_1 term is therefore assigned to a process involving protonation of S_2^2 ⁻ or Se₂²⁻. Such a protonation may enhance electrophilic properties, with the protonated form more susceptible to nucleophilic attack by the PR_3^3 ⁻. The k_{-1} term on the other hand is assigned to acid dissociation of H₂O ligands cis to μ_3 - $(S²)$ or μ_3 -(Se²⁻) (see below), which we suggest has the effect of activating the S_2^2 or Se_2^2 . Although the range of [H⁺]

(28) Doyle, J.; Sykes, A. G. *J. Chem. Soc. A*, **1967**, 795.

values is quite extensive, no denominator terms corresponding to mass-balance considerations were observed. There is no clear-cut evidence for an $[H^+]$ -independent term corresponding to simultaneous protonation and deprotonation on any one cluster. Values of k_1 and k_{-1} indicate ∼10³ times greater reactivity of the S_7 than Se_7 cluster. This is attributed to different S_2^2 and S_2^2 bond strengths and the relative affinities of PR₃^{3–} for S and Se. Surprisingly rate constants for PR_3 ^{3–} abstraction of Se from $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ are 10 times faster than for S abstraction from $[Mq_3S_7(H_2O)_6]^{4+}$ in 2.0 M Hpts. Since electro-negativities for S and Se are quite similar, it would appear that S-Se bonds are weaker than S-S and Se-Se bonds to explain this increase in reactivity. No corresponding reaction of $[M₀₃Te₇(CN)₆]²⁻$ with PR₃^{3–} (or CN⁻) is observed indicating stronger Te-Te bonds.

The Cl^- and Br^- substitution reactions of one H_2O on each Mo of $[Mo_3S_7(H_2O)_6]^{4+}$ and $[Mo_3Se_7(H_2O)_6]^{4+}$ provide information as to the substitution properties of H_2O ligands. Uniphasic kinetics are observed, and reaction can occur concurrently at three equivalent H_2O 's one on each Mo^{IV} as in the case of $[Mo_3S_4(H_2O)_9]^{4+}$ and $[Mo_3Se_4(H_2O)_9]^{4+5,9,29}$ No replacement of trans H_2O 's is observed at the halide concentrations used in these studies. These observations are supported by the preparation of the partially substituted product $[M₀₃S₇]$ $Br_3(NH_2Ph)_3]^+$ from $[M_3S_7Br_6]^{2-}$ with three N-donor atoms in the cis position.21 Selective formation of a single stereoisomer has also been observed in reactions with bidentate S, O donor ligands,^{30,31} when the S-donor occupies the cis position. In the present studies concentrated HCl or HBr is required to replace the three remaining trans H_2O 's. The inertness of H_2O ligands trans to core μ_3 -(S²⁻) is a well-established feature with $[M_0S_4(H_2O)_9]^{4+29}$ and applies also in the case of $[M_0S_4H_2O]^{10}$ $(H_2O)_9]^{4+9}$ Such effects have not yet been fully explained in terms of electron distribution within the clusters but presumably reflect the different donor properties of the μ_3 and μ_2 core ligands. In the S_4 and Se_4 clusters there are two cis H_2O ligands to each Mo, and formation of a conjugate base at one is able to further enhance substitution at the other. The observation that there are no similar $[H^+]^{-1}$ dependences applying in the case of Cl⁻ and Br⁻ substitutions on $[Mo₃S₇(H₂O)₆]$ ⁴⁺ and $[Mo₃ \text{Se}_7(\text{H}_2\text{O})_6$ ¹⁺⁺ can accordingly be explained by there being only one cis H₂O to each Mo.

The summary of rate constants, Table 2, indicates that in the case of $[Mq_3S_7(H_2O)_6]^{4+}$ *k*_f for Br⁻ is more reactive than Cl⁻ (but only by 13%). For Se the difference is greater, with Br-5 times more effective. Comparisons are possible with substitution at the Ni of $[Mo_3NiS_4(H_2O)_{10}]^{4+}$, when k_f values for Br⁻ $(14.6 M^{-1} s^{-1})$ and Cl⁻ (9.4 M⁻¹ s⁻¹) give a similar ratio (1.6).¹⁶ The order of magnitude larger equilibrium constants, Table 2, for the softer halide ions (replacing H_2O) on the Se₇ as compared to S_7 cluster (Se softer than S) is consistent with soft-hard acid-base theory.32

Other comparisons to be made are with the substitution behavior of $[Mo₃Y₄(H₂O)₉]$ ⁴⁺. Particularly relevant are the rate constants for Cl⁻ complexing to $\text{[Mo}_{3}\text{S}_{7}\text{(H}_{2}\text{O})_{6}\text{]}^{4+}$ (1.83 × 10⁻⁴ M^{-1} s⁻¹) and $[Mo₃S₄(H₂O)₉]⁴⁺$ (91 M⁻¹ s⁻¹),²⁹ which differ by a factor of \sim 2 × 10⁶. Replacement of an H₂O cis to the μ_3 -(S²⁻) occurs in each case with [Cl⁻] in the range to 1.3 M.

- (30) Hegetschweiler, K.; Keller, T.; Bäumle, M.; Rihs, G.; Schneider, W. *Inorg. Chem*. **1991**, *30*, 4342.
- (31) Hegetschweiler, K.; Keller, T.; Zimmermann, H.; Schneider, W.; Schmalle, H.; Dubler, E. *Inorg. Chim. Acta*. **1990**, *169*, 235.
- (32) Pearson, R. G. *Inorg. Chim. Acta*. **1995**, *240*, 93 and references therein.

⁽²⁵⁾ Fedin, V. P.; Imoto, H.; Saito, T.; McFarlane, W.; Sykes, A. G. *Inorg. Chem*. **1995**, *34*, 5097.

⁽²⁶⁾ Fedin, V. P.; Mironov, Y. V.; Sokolov, M. N.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. *Zh. Neorg Khim*. **1992**, *37*, 2205.

⁽²⁷⁾ Fedin, V. P.; Sokolov, M. N.; Virovets, A. V.; Podberezskaya, N. V.; Fedorov, V. Y. *Polyhedron* **1992**, *11*, 2395.

⁽²⁹⁾ Richens, D. T.; Pittet, P.-A.; Merbach, A. E.; Humanes, M.; Lamprecht, G. J.; Ooi, B.-L.; Sykes, A. G. *J. Chem. Soc. Dalton Trans*. **1993**, 2305.

A similar ratio applies in the case of $Y = Se$, based on the Cl⁻ study in this paper and data for NCS⁻ substitution on [Mo₃- $Se_4(H_2O)_9]^{4+9}$ These are remarkable effects of the Y_7 as opposed to Y_4 clusters, indicating that Cl^- is a much less effective nucleophile for the chalcogenide-rich clusters. The equilibrium constant (k_f/k_a) for complexing of Cl⁻ to $[M_03S_7]$ - $(\hat{H}_2O)_6$ ¹⁺ (3.9 M⁻¹), Table 2, is very similar to that for [Mo₃S₄- $(H_2O)_9$]⁴⁺ (3.0 M⁻¹).²⁹ The high electron density on the μ -(S₂²⁻) ligands of [Mo₃S₇(H₂O)₆]⁴⁺, which will in part be delocalized onto the metals, appears to inhibit interaction with incoming nucleophiles for both k_f and k_{aq} . A similar but less extensive factor of ∼55 has been observed for NCS⁻ substitution on $[Nb_2(\mu-S_2)_2(H_2O)_8]^{4+}$ as compared to $[Nb_2(\mu-S)_2(H_2O)_8]^{4+33}$

Reactions of the $M_{03}S_7^{4+}$ core with three metals (Sn, Ni, In) known to give heterometallic products with $[Mo_3S_4 (H₂O)₉$ ^{4+ 16,22-24} were also studied. There are at least two stages to the reactions. These are assigned to a reduction process involving the heterometal, with $S-S$ cleavage and H_2S evolution. The heterometal then reacts with the $[Mo₃S₄(H₂O)₉]⁴⁺$ to give products as previously described.^{16,22-24} It is not clear whether adducts, e.g. $Mo₃SnS₇⁴⁺$, are involved in these changes.

To summarize new chalcogenide-rich clusters $[Mo_3S_7(H_2O)_6]^{4+}$, $[Mo_3Se_7(H_2O)_6]^{4+}$, and $[Mo_3S_4Se_3(H_2O)_6]^{4+}$ have been prepared for the first time. Processes investigated include S and Se

abstraction of the equatorial atom of dichalcogenido μ - (Y_2^2) core ligands by phosphine and CN^- to give $[Mo₃Y₄(H₂O)₉]⁴⁺$ and $[Mo₃Y₄(CN)₉]$ ⁵⁻ products (Y = S, Se), respectively. Studies on $[Mo_3S_4Se_3(H_2O)_9]^{4+}$, when abstraction of equatorial Se's is observed, indicate the mechanism of abstraction. X-ray crystallographic information also favors equatorial abstraction because in e.g. the Mo₃S₇ core the Mo-S_{eq} distance is 0.1 Å longer than $Mo-S_{ax}$. The [H⁺] dependencies of the reactions provide further behavioral insight into the aqueous solution chemistry of these chalogenide-rich clusters. The $[M₀₃S₇]$ $(H_2O)_6$ ⁴⁺ and $[M_0{}^3Se_7(H_2O)_6]^{4+}$ clusters are both (H_2O) substitution inert (t_{1/2} < 1 min) at 25 °C. Rate constants for Cl⁻ substitution on the S-rich cluster $[M_03S_7(H_2O)_6]^{4+}$ are a very significant \sim 2 × 10⁶ times smaller than those observed for $[Mo_3S_4(H_2O)_6]^{4+}$.

Acknowledgment. We are grateful to the University of Newcastle for support (D.M.S.), the Royal Society for a Kapitza Fellowship (V.P.F.), and the U.K. Engineering and Physical Sciences Research Council for a Research Grant (G.J.L. and M.N.S.).

Supporting Information Available: Listings of rate constants for the $\overline{PR_3}^{3-}$ chalcogenide-abstraction reactions and Cl^- and Br^- substitution reactions and one figure relating to the PR_3^3 ⁻ studies (11 pages). Ordering information is given on any current masthead page.

IC961343U

⁽³³⁾ Sokolov, M. N.; Hernandez-Molina, R.; Elsegood, M. R. J.; Health, S. C.; Clegg, W.; Sykes, A. G. *J. Chem. Soc., Dalton Trans.*, in press.